LAPLACE TRANSFORMS

INTRODUCTION

Definition

- Transforms -- a mathematical conversion from one way of thinking to another to make a problem easier to solve
problem
in original
\(\begin{aligned} \& way of

\& thinking

\& transform\end{aligned} \rightarrow\)	$\begin{array}{c}\text { solution } \\ \text { in transform } \\ \text { way of } \\ \text { thinking }\end{array}$
transform	\(\rightarrow \xrightarrow{inverse} \begin{aligned} \& way of

\& thinking\end{aligned}\)
\rightarrow

- Transforms
- Fourier
-Laplace
- z-transform
- wavelets

2. Transforms

- Fourier transforms are extremely useful in the study of many problems of practical importance involving signals and LTI systems.
> purely imaginary complex exponentials $e^{s t}, s=j w$
> large class of signals can be represented as a linear combination of complex exponentials
- However, this process applies to any complex number s, not just purely imaginary (signals)

Fourier transform >> $\mathrm{F}(\mathrm{j} \omega)$
Laplace Transform >> F(s)

- This leads to the development of the Laplace transform where s is an arbitrary complex number.
- Laplace and z-transforms can be applied to the analysis of unstable system (signals with infinite energy) and play a role in the analysis of system stability

- Other transforms
- Fourier
- z-transform
- wavelets

Laplace transformation

time domain

Laplace domain or complex frequency domain
4. Laplace transforms

Basic Tool For Continuous Time:

 Laplace Transform$$
\mathbf{L}[f(t)]=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

- Convert time-domain functions and operations into complex frequency-domain
- $f(t) \rightarrow F(s) \quad(t \in R, s \in C)$
- Linear differential equations (LDE) \rightarrow algebraic expression in Complex plane
- Discrete systems use the analogous z-transform

The Laplace Transform

The Laplace Transform of a function, $f(t)$, is defined as;

$$
L[f(t)]=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

Eq A

The Inverse Laplace Transform is defined by

$$
L^{-1}[F(s)]=f(t)=\frac{1}{2 \pi j_{j}} \int_{\sigma-j \infty}^{\sigma+j \infty} F(s) e^{t s} d s \quad E q \text { B }
$$

The Laplace Transform

We generally do not use EqB to take the inverse Laplace. However,
this is the formal way that one would take the inverse. To use

Eq B requires a background in the use of complex variables and
the theory of residues. Fortunately, we can accomplish the same
goal (that of taking the inverse Laplace) by using partial fraction
expansion and recognizing transform pairs.

The Laplace Transform

An important point to remember:

$$
f(t) \Leftrightarrow F(s)
$$

The above is a statement that $f(t)$ and $F(s)$ are transform pairs. What this means is that for each $f(t)$ there is a unique $F(s)$ and for each $F(s)$ there is a unique $f(t)$. If we can remember the Pair relationships between approximately 10 of the Laplace transform pairs we can go a long way.

Laplace Transforms of Common Functions

Laplace Transform of the unit step.

$$
\boldsymbol{L}[\boldsymbol{u}(t)]=\int_{0}^{\infty} 1 \boldsymbol{e}^{-s t} d \boldsymbol{t}=\left.\frac{-1}{\boldsymbol{s}} \boldsymbol{e}^{-s t}\right|_{0} ^{\infty}
$$

$$
L[u(t)]=\frac{1}{s}
$$

Laplace Transforms of Common Functions

The Laplace transform of a unit impulse:
Pictorially, the unit impulse appears as follows:

Mathematically:

$$
\delta\left(\mathbf{t}-\mathbf{t}_{\mathbf{0}}\right)=\mathbf{0} \quad \mathbf{t} \neq \mathbf{0}
$$

$$
t_{0}+\varepsilon
$$

$$
\int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \delta\left(t-t_{0}\right) d t=1 \quad \varepsilon>0
$$

Laplace Transforms of Common Functions

The Laplace transform of a unit impulse:

An important property of the unit impulse is a sifting or sampling property. The following is an important.

$$
\int_{t_{1}}^{t_{2}} f(t) \delta\left(t-t_{0}\right) d t=\left\{\begin{array}{lr}
f\left(t_{0}\right) & t_{1}<t_{0}<t_{2} \\
0 & t_{0}<t_{1}, t_{0}>t_{2}
\end{array}\right.
$$

In particular, if we let $f(t)=\delta(t)$ and take the Laplace

$$
L[\delta(t)]=\int_{0}^{\infty} \delta(t) e^{-s t} d t=e^{-0 s}=1
$$

Laplace Transforms of Common Functions

Building transform pairs:

$$
L\left[e^{-a t} u(t)\right]=\int_{0}^{\infty} e^{-a t} e^{-s t} d t=\int_{0}^{\infty e} e^{-(s+a) t} d t
$$

$$
L\left[e^{-a t} u(t)\right]=\left.\frac{-e^{-s t}}{(s+a)}\right|_{0} ^{\infty}=\frac{1}{s+a}
$$

Laplace Transforms of Common Functions

$$
\int_{0}^{\infty} u d v=\left.u v\right|_{0} ^{\infty}-\int_{0}^{\infty} v d u \quad \left\lvert\, \begin{aligned}
& \mathbf{u}=\mathbf{t} \\
& \mathbf{d v}=\mathrm{e}^{-\mathrm{st}} \mathrm{dt}
\end{aligned}\right.
$$

$$
\boldsymbol{t u}(\boldsymbol{t}) \Leftrightarrow \frac{1}{\boldsymbol{s}^{2}}
$$

Laplace Transforms of Common Functions

Transform Pairs:

$\mathrm{f}(\mathrm{t})$	$\mathrm{F}(\mathrm{s})$
$\delta(t)$	1
$u(t)$	$\frac{1}{s}$
$(e)^{-a t}$	$\frac{1}{s+a}$
t	$\frac{1}{s^{2}}$
t^{n}	$\frac{n!}{s^{n+1}}$

Laplace Transforms of Common Functions

Transform Pairs:

$\mathrm{f}(\mathrm{t})$	$\mathrm{F}(\mathrm{s})$
$t e^{-a t}$	$\frac{1}{(s+a)^{2}}$
$t^{n} e^{-a t}$	$\frac{n!}{(s+a)^{n+1}}$
$\sin (w t)$	$\frac{w}{s^{2}+w^{2}}$
$\cos (w t)$	$\frac{s}{s^{2}+w^{2}}$

Laplace Transforms of Common Functions

Transform Pairs:

$$
\begin{array}{c|c}
\mathbf{f}(\mathbf{t}) & \mathbf{F}(\mathbf{s}) \\
\hline e^{-a t} \sin (\boldsymbol{w} t) & \frac{\boldsymbol{w}}{(\boldsymbol{s}+\boldsymbol{a})^{2}+w^{2}} \\
\boldsymbol{e}^{-a t} \cos (\boldsymbol{w} t) & \frac{\boldsymbol{s}+\boldsymbol{a}}{(\boldsymbol{s}+\boldsymbol{a})^{2}+w^{2}} \\
\sin (\boldsymbol{w} t+\theta) & \frac{\boldsymbol{s} \sin \theta+\boldsymbol{w} \cos \theta}{s^{2}+w^{2}} \\
\cos (\boldsymbol{w} \boldsymbol{t}+\theta) & \frac{s \cos \theta-\boldsymbol{w} \sin \theta}{s^{2}+w^{2}}
\end{array}
$$

Laplace Transforms Properties

Frequency Shift

$$
\begin{aligned}
L\left[e^{-a t}\right. & f(t)]=\int_{0}^{\infty}\left[e^{-a t} f(t)\right] e^{-s t} d t \\
& =\int_{0}^{\infty} f(t) e^{-(s+a) t} d t=F(s+a)
\end{aligned}
$$

$$
L\left[e^{-a t} f(t)\right]=F(s+a)
$$

Laplace Transforms Properties

Example: Using Frequency Shift

Find the $L\left[e^{-a t} \cos (w t)\right]$

In this case, $f(t)=\cos (w t)$ so,

$$
\begin{aligned}
& F(s)=\frac{s}{s^{2}+w^{2}} \\
& \text { and } F(s+a)=\frac{(s+a)}{(s+a)^{2}+w^{2}}
\end{aligned}
$$

$$
L\left[e^{-a t} \cos (w t)\right]=\frac{(\boldsymbol{s}+\boldsymbol{a})}{(\boldsymbol{s}+\boldsymbol{a})^{2}+(w)^{2}}
$$

Laplace Transforms Properties

Time Integration:

$$
\begin{aligned}
L\left[\int_{0}^{\infty} f(t) d t\right] & =\frac{1}{s} \int_{0}^{\infty} f(t) e^{-s t} d t \\
& =\frac{1}{s} F(s)
\end{aligned}
$$

Time Differentiation:

If the $L[f(t)]=F(s)$, we want to show:

$$
L\left[\frac{d f(t)}{d t}\right]=s F(s)-f(0)
$$

Laplace Transforms Properties

Time Differentiation:

We can extend the previous to show;
$L\left[\frac{d f(t)^{2}}{d t^{2}}\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)$
$L\left[\frac{d f(t)^{3}}{d t^{3}}\right]=s^{3} F(s)-s^{2} f(0)-s^{\prime}(0)-f^{\prime \prime}(0)$
general case
$L\left[\frac{d f(t)^{n}}{d t^{n}}\right]=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)$

$$
-\ldots-\boldsymbol{f}^{(n-1)}(0)
$$

Linearity		$f_{1}(t) \pm f_{2}(t)$	$F_{1}(\mathrm{~s}) \pm \mathrm{F}_{2}$
Constant multi	lication	$a \mathrm{f}(\mathrm{t})$	a F(s)
Complex shift		$e^{\text {at }} \mathrm{f}(\mathrm{t})$	$F(s-a)$
Real shift		$f(t-T)$	$\mathrm{e}^{\text {Ts }} \mathrm{F}(\mathrm{as})$
Scaling		$\mathrm{f}(\mathrm{t} / \mathrm{a})$	a F(as)
	$\begin{aligned} & \gg \operatorname{syms} \mathrm{f} \mathrm{~b} \\ & >\mathrm{f}=\mathrm{t}^{*} \cos \left(\mathrm{~b}^{*} \mathrm{t}\right) \\ & \ggg>\text { laplace }(\mathrm{f}) \end{aligned}$		
	ans $=$		
	1/ $\left(s^{\wedge} 2+b^{\wedge}\right.$	2-b^2)	

Laplace Transforms Theorem

Theorem: Initial Value Theorem:

If the function $f(t)$ and its first derivative are Laplace transformable and $f(t)$ Has the Laplace transform $F(s)$, and the $\lim _{s \rightarrow \infty} S(s)$ exists, then

$$
\begin{array}{|l|c|}
\hline \lim _{s \rightarrow \infty} F(s)=\lim f(t)=f(0) & \text { Initial Value } \\
s \rightarrow 0 & \text { Theorem }
\end{array}
$$

The utility of this theorem lies in not having to take the inverse of $\mathrm{F}(\mathrm{s})$ in order to find out the initial condition in the time domain. This is particularly useful in circuits and systems.

Laplace Transforms Theorem

Example: Initial Value Theorem:

Given;

$$
F(s)=\frac{(s+2)}{(s+1)^{2}+5^{2}}
$$

Find $\mathbf{f}(\mathbf{0})$

$$
\begin{aligned}
f(0) & =\lim _{s \rightarrow \infty} s F(s)=\lim _{s \rightarrow \infty} s \frac{(s+2)}{(s+1)^{2}+5^{2}}=\lim _{s \rightarrow \infty}\left[\frac{s^{2}+2 s}{s^{2}+2 s+1+25}\right] \\
& =\lim _{s \rightarrow \infty} \frac{s^{2} / s^{2}+2 s / s^{2}}{s^{2} / s^{2}+2 s / s^{2}+\left(26 / s^{2}\right)}=1
\end{aligned}
$$

Laplace Transforms Theorem

Theorem: Final Value Theorem:

If the function $f(t)$ and its first derivative are Laplace transformable and $f(t)$ has the Laplace transform $F(s)$, and the $\lim s F(s)$ exists, then

$$
s \rightarrow \infty
$$

$$
\lim _{s \rightarrow 0} s F(s)=\lim _{t \rightarrow \infty} f(t)=f(\infty)
$$

Final Value Theorem

Again, the utility of this theorem lies in not having to take the inverse of $F(s)$ in order to find out the final value of $f(t)$ in the time domain. This is particularly useful in circuits and systems.

Laplace Transforms Theorem

Example: Final Value Theorem:

Given:

$$
F(s)=\left[\begin{array}{l}
(s+2)^{2}-3^{2} \\
\left.(s+2)^{2}+3^{2}\right]
\end{array} \quad \text { note } F^{-1}(s)=t e^{-2 t} \cos 3 t\right.
$$

Find $f(\infty)$.

$$
f(\infty)=\lim _{s \rightarrow 0} s F(s)=\lim _{s \rightarrow 0} s \frac{(s+2)^{2}-3^{2}}{\left[(s+2)^{2}+3^{2}\right]}=0
$$

LAPLACE TRANSFORMS

PARTIAL FRACTION EXPANSION

PARTIAL FRACTION EXPANSION

Definition

- Definition -- Partial fractions are several fractions whose sum equals a given fraction
- Purpose -- Working with transforms requires breaking complex fractions into simpler fractions to allow use of tables of transforms

Partial Fraction Expansions

$$
\frac{s+1}{(s+2)(s+3)}=\frac{A}{s+2}+\frac{B}{s+3}
$$

- Expand into a term for each factor in the denominator.

$$
\frac{s+1}{(s+2)(s+3)}=\frac{A(s+3)+B(s+2)}{(s+2)(s+3)} \backsim \text { Recombine RHS }
$$

$$
A+B=1 \quad 3 A+2 B=1
$$

- Equate terms in s and constant terms. Solve.

$$
\frac{s+1}{(s+2)(s+3)}=\frac{-1}{s+2}+\frac{2}{s+3}
$$

- Each term is in a form so that inverse Laplace transforms can be applied.

Example of Solution of an ODE

 (Using Laplace and Inverse Laplace)$$
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+8 y=2 \quad y(0)=y^{\prime}(0)=0 \triangleq \text { ODE w/initial conditions }
$$

$$
s^{2} Y(s)+6 s Y(s)+8 Y(s)=2 / s
$$

$$
Y(s)=\frac{2}{s(s+2)(s+4)}
$$

$$
Y(s)=\frac{1}{4 s}+\frac{-1}{2(s+2)}+\frac{1}{4(s+4)}
$$

$$
y(t)=\frac{1}{4}-\frac{e^{-2 t}}{2}+\frac{e^{-4 t}}{4}
$$

- Apply Laplace transform to each term
- Solve for $\mathrm{Y}(\mathrm{s})$
- Apply partial fraction expansion
- Apply inverse Laplace transform to each term

Different terms of 1 st degree

- To separate a fraction into partial fractions when its denominator can be divided into different terms of first degree, assume an unknown numerator for each fraction
- Example --
- $(11 x-1) /\left(X^{2}-1\right)=A /(x+1)+B /(x-1)$
$a=[A(x-1)+B(x+1)] /[(x+1)(x-1))]$
- $A+B=11$
$\square-A+B=-1$
- $A=6, B=5$
- When the factors of the denominator are of the first degree but some are repeated, assume unknown numerators for each factor
- If a term is present twice, make the fractions the corresponding term and its second power
- If a term is present three times, make the fractions the term and its second and third powers

Repeated terms of 1 st degree (2 of 2$)$

- Example --
- $\left(x^{2}+3 x+4\right) /(x+1)^{3}=A /(x+1)+B /(x+1)^{2}+$ $\mathrm{C} /(\mathrm{x}+1)^{3}$
- $x^{2}+3 x+4=A(x+1)^{2}+B(x+1)+C$
- $=A x^{2}+(2 A+B) x+(A+B+C)$
- $A=1$
- $2 A+B=3$
- $A+B+C=4$
- $A=1, B=1, C=2$

3. Partial fractions

Different quadratic terms

- When there is a quadratic term, assume a numerator of the form $\mathrm{Ax}+\mathrm{B}$
- Example --
- $1 /\left[(x+1)\left(x^{2}+x+2\right)\right]=A /(x+1)+(B x+C) /\left(x^{2}+\right.$ $x+2$)
- $1=A\left(x^{2}+x+2\right)+B x(x+1)+C(x+1)$
- $1=(A+B) x^{2}+(A+B+C) x+(2 A+C)$
- $A+B=0$
- $A+B+C=0$
- $2 A+C=1$
- $A=0.5, B=-0.5, C=0$

3. Partial fractions

Repeated quadratic terms

 Example --- $1 /\left[(x+1)\left(x^{2}+x+2\right)^{2}\right]=A /(x+1)+(B x+C) /\left(x^{2}\right.$ $+x+2)+(D x+E) /\left(x^{2}+x+2\right)^{2}$
- $1=A\left(x^{2}+x+2\right)^{2}+B x(x+1)\left(x^{2}+x+2\right)+$ $C(x+1)\left(x^{2}+x+2\right)+D x(x+1)+E(x+1)$
$\square A+B=0$
- $2 \mathrm{~A}+2 \mathrm{~B}+\mathrm{C}=0$
- $5 A+3 B+2 C+D=0$
- $4 \mathrm{~A}+2 \mathrm{~B}+3 \mathrm{C}+\mathrm{D}+\mathrm{E}=0$
- $4 \mathrm{~A}+2 \mathrm{C}+\mathrm{E}=1$
- $A=0.25, B=-0.25, C=0, D=-0.5, E=0$

LAPLACE TRANSFORMS

SOLUTION PROCESS

Solution process (1 of 8)

- Any nonhomogeneous linear differential equation with constant coefficients can be solved with the following procedure, which reduces the solution to algebra

Solution process (2 of 8)

Step 1: Put differential equation into standard form
$\square D^{2} y+2 D y+2 y=\cos t$
$\square \mathrm{y}(0)=1$
$\square \mathrm{D} y(0)=0$

Solution process (3 of 8)

Step 2: Take the Laplace transform of both sides
$-L\left\{D^{2} y\right\}+L\{2 D y\}+L\{2 y\}=L\{\cos t\}$

Solution process (4 of 8)

- Step 3: Use table of transforms to express equation in s-domain
$a L\left\{D^{2} y\right\}+L\{2 D y\}+L\{2 y\}=L\{\cos \omega t\}$
$\square L\left\{D^{2} y\right\}=s^{2} Y(s)-s y(0)-D y(0)$
$\square L\{2 \mathrm{D} y=2[\mathrm{~s} Y(\mathrm{~s})-\mathrm{y}(0)]$
$-\mathrm{L}\{2 \mathrm{y}\}=2 \mathrm{Y}(\mathrm{s})$
$\square L\{\cos t\}=s /\left(s^{2}+1\right)$
$-s^{2} Y(s)-s+2 s Y(s)-2+2 Y(s)=s /\left(s^{2}+1\right)$

Solution process (5 of 8)

- Step 4: Solve for Y(s)
$-s^{2} Y(s)-s+2 s Y(s)-2+2 Y(s)=s /\left(s^{2}+1\right)$
- $\left(s^{2}+2 s+2\right) Y(s)=s /\left(s^{2}+1\right)+s+2$
- $Y(s)=\left[s /\left(s^{2}+1\right)+s+2\right] /\left(s^{2}+2 s+2\right)$

$$
=\left(s^{3}+2 s^{2}+2 s+2\right) /\left[\left(s^{2}+1\right)\left(s^{2}+2 s+2\right)\right]
$$

Solution process (6 of 8)

- Step 5: Expand equation into format covered by table
- $Y(s)=\left(s^{3}+2 s^{2}+2 s+2\right) /\left[\left(s^{2}+1\right)\left(s^{2}+2 s+2\right)\right]$
$a=(A s+B) /\left(s^{2}+1\right)+(C s+E) /\left(s^{2}+2 s+2\right)$
$a(A+C) s^{3}+(2 A+B+E) s^{2}+(2 A+2 B+C) s+(2 B$ +E)
- $1=A+C$
- $2=2 A+B+E$
- $2=2 A+2 B+C$
$-2=2 B+E$
$\square A=0.2, B=0.4, C=0.8, E=1.2$

Solution process (7 of 8)

$\quad(0.2 \mathrm{~s}+0.4) /\left(\mathrm{s}^{2}+1\right)$
$=0.2 \mathrm{~s} /\left(\mathrm{s}^{2}+1\right)+0.4 /\left(\mathrm{s}^{2}+1\right)$
$(0.8 \mathrm{~s}+1.2) /\left(\mathrm{s}^{2}+2 \mathrm{~s}+2\right)$
$=0.8(\mathrm{~s}+1) /\left[(\mathrm{s}+1)^{2}+1\right]+0.4 /\left[(\mathrm{s}+1)^{2}+1\right]$

Solution process (8 of 8)

- Step 6: Use table to convert s-domain to time domain
$\square 0.2 \mathrm{~s} /\left(\mathrm{s}^{2}+1\right)$ becomes $0.2 \cos \mathrm{t}$
$\square 0.4 /\left(s^{2}+1\right)$ becomes $0.4 \sin t$
$\square 0.8(\mathrm{~s}+1) /\left[(\mathrm{s}+1)^{2}+1\right]$ becomes $0.8 \mathrm{e}^{-\mathrm{t}} \cos \mathrm{t}$
$\square 0.4 /\left[(s+1)^{2}+1\right]$ becomes $0.4 \mathrm{e}^{-\mathrm{t}} \sin \mathrm{t}$
$a y(t)=0.2 \cos t+0.4 \sin t+0.8 e^{-t} \cos t+0.4$ $\mathrm{e}^{-\mathrm{t}} \sin \mathrm{t}$

Partial Fraction Expansion Using Matlab

$$
\frac{8 x^{2}+3 x-21}{x^{3}-7 x-6}=\frac{8 x^{2}+3 x-21}{(x+2)(x-3)(x+1)}
$$

$$
\begin{aligned}
& \mathrm{b}=\left[\begin{array}{lll}
8 & 3 & -21
\end{array}\right] \\
& \mathrm{a}=\left[\begin{array}{llll}
1 & 0 & -7 & -6
\end{array}\right] \\
& {[r, p, k]=r e s i d u e(b, a)}
\end{aligned}
$$

$$
\frac{b(s)}{a(s)}=\frac{r_{1}}{s-p_{1}}+\frac{r_{2}}{s-p_{2}}+\ldots+\frac{r_{n}}{s-p_{n}}+k(s)
$$

We can also use ilaplace（F）； but the result may not be simplified！

```
r =
```

$\mathrm{p}=$

3 ． 3 ロロロロ
－ 2 ．ロロロロ
－ 1 ．ロロロロ

$$
\frac{8 x^{2}+3 x-21}{(x+2)(x-3)(x+1)}=\frac{1}{x+2}+\frac{3}{x-3}+\frac{4}{x+1}
$$

LAPLACE TRANSFORMS

TRANSFER FUNCTIONS

Introduction

- Definition -- a transfer function is an expression that relates the output to the input in the s-domain

5. Transfer functions

Transfer Function

- Definition

$$
\square H(s)=Y(s) / X(s)
$$

$$
X(s) \rightarrow H(s) \rightarrow Y(s)
$$

- Relates the output of a linear system (or component) to its input
- Describes how a linear system responds to an impulse
- All linear operations allowed
\square Scaling, addition, multiplication

block diagram

- Pictorially expresses flows and relationships between elements in system
- Can simplify according to rules reference input, $\mathrm{R}(\mathrm{s})$

feedback, $\mathrm{H}(\mathrm{s}) \mathrm{Y}(\mathrm{s})$

5. Transfer functions

Block diagram reduction rules Series

Parallel

Feedback

5. Transfer functions

Example

$\square=(R+1 /(C s)+s L) l(s)$
$\square=\left(C L s^{2}+C R s+1\right) /(C s) l(s)$

- $I(s) / V(s)=C s /\left(C L s^{2}+C R s+1\right)$
C

$$
v(t)=R I(t)+1 / C \int I(t) d t+L d i(t) / d t
$$

$$
V(s)=[R I(s)+1 /(C s) I(s)+s L I(s)]
$$

Note: Ignore initial conditions

